
The Leaky Integrating Threshold and its impact on evidence
accumulation models of choice RT

Stijn Verdonck(stijn.verdonck@kuleuven.be)
KU Leuven

Tim Loossens
KU Leuven

Marios G. Philiastides
Institute of Neuroscience and Psychology, University of Glasgow

Abstract
A common assumption in choice response time modelling is that after evi-
dence accumulation reaches a certain decision threshold, the choice is cate-
gorically communicated to the motor system that then executes the response.
However, neurophysiological findings suggest that motor preparation partly
overlaps with evidence accumulation, and is not independent from stimulus
difficulty level. We propose to model this entanglement by changing the
nature of the decision criterion from a simple threshold to an actual pro-
cess. More specifically, we propose a secondary, motor preparation related,
leaky accumulation process that takes the accumulated evidence of the orig-
inal decision process as a continuous input, and triggers the actual response
when it reaches its own threshold. We analytically develop this Leaky In-
tegrating Threshold (LIT), applying it to a simple constant drift diffusion
model, and show how its parameters can be estimated with the D*Mmethod.
Reanalyzing three different datasets, the LIT extension is shown to outper-
form a standard drift diffusion model using multiple statistical approaches.
Further, the LIT leak parameter is shown to be better at explaining the
speed/accuracy trade-off manipulation than the commonly used boundary
separation parameter. These improvements can also be verified using tra-
ditional diffusion model analyses, for which the LIT predicts the violation
of several common selective parameter influence assumptions. These predic-
tions are consistent with what is found in the data and with what is reported
experimentally in the literature. Crucially, this work offers a new benchmark
against which to compare neural data to offer neurobiological validation for
the proposed processes.

Keywords: LIT, choice RT, diffusion model, motor preparation, threshold,
boundary
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The study of the neurobiological and computational underpinnings of perceptual decision
making has received considerable attention across species and levels of description (Gold
and Heekeren, 2013; Gold and Shadlen, 2007; Heekeren et al., 2008; Sajda et al., 2009).
For example, several non-human primate electrophysiology studies have revealed patterns
of single-unit activity that exhibit an integrative decision mechanism in areas of the parietal
and prefrontal cortex (Ding and Gold, 2012; Kim and Shadlen, 1999; Meister et al., 2013;
Shadlen and Newsome, 2001). Specifically, firing rates of a subset of neurons in these areas
build up over time with a rate proportional to the amount of sensory evidence (i.e., difficulty
of the task) and eventually converge to a common firing level (decision boundary) as animals
commit to a choice. In humans, macroscopic measurements of neural activity using M/EEG
(O’Connell et al., 2012; Philiastides et al., 2014a; Pisauro et al., 2017; Polania et al., 2014;
Ratcliff et al., 2009; Wyart et al., 2012) and fMRI experiments (Heekeren et al., 2004; Kayser
et al., 2010; Noppeney et al., 2010; Ploran et al., 2011) have revealed comparable activation
patterns in similar brain regions.

The longstanding assumption in this accumulation-to-bound framework has been that
the motor system is engaged to indicate the eventual choice, only after an internal decision
threshold is reached. More recent evidence, however, appears to contradict this strict tem-
poral dichotomy between decisional and motor processes and suggests that the motor system
is already engaged during the decision making, not just after. Research using electromyogra-
phy of hand muscles, identified partially executed (covert) responses when different decision
alternatives competed for representation (McBride et al., 2018; Spieser et al., 2017). These
covert responses (Rochet et al., 2014), suggest that activity in the motor system is being
updated continuously as the decision process unfolds (Servant et al., 2015). In line with
interpretation, recent work on volition argued that internally generated actions depend on
the leaky integration of endogenous neuronal noise (Haggard, 2019; Schurger et al., 2012).

Similarly, response-selective activity in MEG studies (extracted by exploiting the well-
known contralateral motor bias) was shown to exhibit choice-predictive activity that built
up gradually during a direction discrimination task and reflected the temporal integral of
the activity arriving from motion-selective sensory areas (Donner et al., 2009,0). Separate
fMRI and transcranial magnetic stimulation work offered additional support that brain
areas involved in evidence accumulation are tightly coupled with the motor system, such
that evolving decisions are also reflected in motor activity when the relevant decisions are
mapped onto actions (Filimon et al., 2013; Klein-Flugge and Bestmann, 2012). Intriguingly,
recent multi-unit recordings in animals demonstrated that while neural representations in
sensory and association cortices were sufficient to perform a simple discrimination task,
inactivation of a downstream pre-motor area, led to gross behavioral impairments (Wu
et al., 2019).

Despite this evidence, the precise functional role of the motor system in decision-making
remains unclear. More specifically, it remains unknown whether the motor apparatus merely
receives “echoes” of the relevant decision variables or is more actively involved in driving the
decision itself. Notwithstanding, these recent findings suggest that neural activity related

Some of the ideas presented in this manuscript have already been presented at the International Meeting
of the Psychometric Society 2019, Santiago, Chile.
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to motor preparation, starts its buildup well before the evidence accumulation process
completes, effectively lagging the primary process of evidence accumulation. Consequently,
the level of stimulus difficulty could have a direct impact on motor preparation, which in
turn could influence the eventual choice. This entanglement (and its potential implications)
is not accounted for in the current generation of computational models that describe choice
RT data with noisy evidence accumulators (Palmer et al., 2005; Ratcliff, 1978; Usher and
McClelland, 2001).

Customarily, evidence accumulation models require a criterion to decide when enough
evidence has been accumulated to warrant a choice. Although some alternatives for the
commonly used fixed decision boundary have been proposed (e.g., collapsing bounds, see
Hawkins et al., 2015), the relation between the decision making process on the one hand and
the motor execution process on the other, is always assumed to be limited to a mere choice
relay, once the decision has been formed. In this paper, we model the entanglement between
the evidence accumulation and motor preparation processes with a process boundary. This
process boundary is formalized as a second leaky accumulation process (presumably imple-
mented in the motor system) that takes the accumulated evidence of the decision process
as a continuous input and triggers the actual physical response when it reaches a certain
threshold of its own. In other words, the evidence accumulator relinquishes control of the
eventual choice by passing the integrated evidence along to the motor system. In that sense,
it is the dynamics observed in the latter that dictate the choice.

We first implement this process boundary, which we will call the Leaky Integrating
Threshold (LIT), for the widely used one-dimensional constant drift diffusion model (DDM).
We investigate this special case analytically and show what the implications of such a process
boundary are, with special attention for the speed/accuracy trade-off (SAT) manipulation.
Conceptually, the LIT framework enables a more intricate interplay between decision and
motor processes and by extension could offer a more flexible account of how perceptual
decisions, in general, are being implemented. We chose to put a special emphasis on the
SAT primarily as a means of validating the model. More specifically, the SAT offers an
intuitive opportunity for a robust manipulation of the “leak” parameter in the model and
by extension it enables a direct comparison of the LIT with other incarnations of the more
conventional DDM.

We use two different approaches to examining the data: the first uses a recently devel-
oped simulation based method of statistical inference called prepaid (Mestdagh et al., 2019)
to directly fit the LIT to data; the second uses an approximation of the LIT that can be
tackled with simpler numerical tools. We use both methods to analyse a diverse collection
of datasets and compare the LIT to existing models. In both approaches, we first test if a
leak parameter adds to a simple DDM description of choice RT data, in both the speed and
the accuracy condition. We then test if the leak parameter constitutes a good alternative
for boundary separation to model SAT. The second approach allows us to compare the
leak parameter with the inter-trial variability parameters as defined in the popular Ratcliff
extension (RDM). Depending on what is possible in each approach, we also investigate the
selective influence of typical experimental manipulations on model parameters. This is a
critical step since task manipulations, such as difficulty and SAT, should each only impact
a designated parameter in order for the model to be easily interpretable.

Finally, we briefly investigate the impact of the LIT on more complex 2D models of choice
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RT, more specifically on the Leaky Competing Accumulator (LCA) (Usher and McClelland,
2001) and the Ising Decision Maker (IDM) (Verdonck and Tuerlinckx, 2014).

The modeling proposed in this paper builds on the vast tradition of diffusion models
for choice RT, as they are used in the fields of psychology and neuroscience. Although we
drew inspiration from from both domains for the formulation of the model, in terms of
experimental validation, this paper focuses purely on behavioral choice RT data. A com-
plete assessment of the model will require independent neurobiological validation, ideally
at different levels of abstraction.

1 The Leaky Integrating Threshold

The dynamics of the deterministic Leaky Integrating Threshold are formalized as

dy(t) = (βx(t)− λy(t))dt, (1)

with x(t) the evidence buildup over time, y(t) the resulting LIT buildup over time, λ the
leak that determines their lag, and β a scaling parameter for the input. When this LIT
process hits some boundary, the physical response ensues and a choice is conveyed. The
LIT boundaries are set up similarly to the stopping criterion of the evidence accumulation
process x(t) under consideration. In the case of typical one-dimensional evidence accumu-
lators like the constant drift diffusion model, both upper and lower boundaries are used,
each representing one of the two possible choices. This means a decision is made once the
process exceeds the upper or drops below the lower decision boundary. In the case of two-
dimensional evidence accumulators like the LCA or the IDM, each dimension of evidence
has their own LIT with a single upper boundary. In this case, whichever of the two dimen-
sion boundaries is crossed first, determines the choice. In this paper, we deliberately choose
not to add Wiener noise to the LIT equation, to keep the mathematics of this additional
level as simple as possible. In contrast, we fully respect the stochastic nature of the evidence
accumulation process x(t), most importantly when calculating its impact on the LIT signal
y(t). The solution for y(t) in Equation 1 is

y(t) = β

∫ t

−∞
dt′x(t′)eλ(t′−t). (2)

Indeed, substituting this solution in Equation 1, gives

dy(t)
dt

= β
d

dt

(
e−λt

∫ t

−∞
dt′x(t′)eλt′

)
= β

(
−λe−λt

∫ t

−∞
dt′x(t′)eλt′ + e−λtx(t)eλt

)
= −λy(t) + βx(t).

As can be seen from Equation 2, the effect of the Leaky Integrating Threshold is that of
a smoothing filter. It takes the average of all past states of x(t), but with exponentially
decaying weights. Because this averaging flattens out random noise, the signal-to-noise ratio
of the underlying process is increased.

Rescaling y and boundary a with the same factor λ
β ,
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y′ = λ

β
y

a′ = λ

β
a,

does not change first passage times nor choice RT outcomes. The equation can now be
written as

β

λ

dy′(t)
dt

= −βy′(t) + βx(t)

dy′(t)
dt

= −λy′(t) + λx(t),

with solution
y′(t) = λ

∫ t

−∞
dt′x(t′)eλ(t′−t). (3)

This rescaling removes a redundant parameter by equating λ = β.

1.1 Applied to the constant drift diffusion model

In the following paragraphs, we apply the LIT to the constant drift diffusion model.
We start out with a simpler problem – describing the situation without absorbing bound-
aries. The constant drift diffusion model is described by the following stochastic differential
equation:

dx(t) = vdt+ σdW (t),

with v the drift speed, σ the diffusion rate and W (t) a Wiener process. The solution to this
equation is

x(t) = x0 + vt+ σWt, (4)

with x0 the starting position. Now, let’s insert the diffusion process of Equation 4 into the
LIT solution in Equation 2. Assuming that drift speed v and noise σ are zero before t = 0,

y(t) = λ

∫ t

−∞
dt′(x0 + vt′ + σWt′)eλ(t′−t)

= λx0

∫ t

−∞
dt′eλ(t′−t)︸ ︷︷ ︸
A

+ λv

∫ t

0
dt′t′eλ(t′−t)︸ ︷︷ ︸

B

+λσ
∫ t

0
dt′eλ(t′−t)Wt′︸ ︷︷ ︸

C

. (5)

Inserting the results from integrals A, B and C (for more details, see Appendix I), we can
say y(t) constitutes a stochastic process that is normally distributed at every time point t,
with the mean evolving as
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〈y(t)〉 = x0 + v(t− 1
λ

+ e−λt

λ
),

and the variance as

〈
(y(t)− 〈y(t)〉)2

〉
= σ2

(
t− 3

2λ + 4e−λt − e−2λt

2λ

)
.

For sufficiently large t, the mean and variance are respectively given by

〈
(y(t)− 〈y(t)〉)2

〉
= σ2

(
t− 3

2λ

)
,

〈y(t)〉 =x0 + v(t− 1
λ

)

=x0 + v

(
t− ( 3

2λ −
1

2λ)
)

=(x0 + v

2λ) + v(t− 3
2λ). (6)

This is the same distributional evolution as that of a simple constant drift diffusion process
with the same drift speed v and noise σ, a stimulus dependent bias y0 = x0 + v

2λ towards
the correct choice and shifted 3

2λ time units backward in time. The origin of the stimulus
dependent bias can be intuitively understood as follows. As can be seen from Equation 6,
the LIT signal y(t) lags the original evidence accumulation signal x(t) = x0 + vt + σWt.
This lag, however, is not the same for the expected mean and variance of those processes.
As is apparent from Equation 6, the LIT signal mean is delayed by 1

λ , while its variance is
delayed by the slightly larger amount 3

2λ . Because the variance only starts growing later,
the first part of the evolution can be seen as deterministic, and its effect can be reduced to
a bias proportional to the drift speed. At least, the LIT process at larger t behaves as if this
would have happened: Equation 6 does not offer much insight into what really occurs at
small t in the LIT, as the approximation is only valid for large t. This is something that is
best assessed through simulations. Although mathematically presented as a bias of a DDM,
it is important to stress that this stimulus dependent bias has no valid interpretation in that
context. In a traditional interpretation of any diffusion model of choice RT, a bias can never
be stimulus dependent, because this would mean that the initial value of the accumulated
evidence contains information about the stimulus, even before it had the chance to convey
it. In the same vein, a bias can never point towards the correct answer: it should always
point to one of the two experimental options, regardless of the stimulus.

Now, let’s consider the case with absorbing boundaries. Because the resulting signal
y(t) is one-dimensional like x(t), two boundaries are required. Throughout this paper,
boundaries on one-dimension models — on the level of the LIT or otherwise — always
represent choice options, not correct or error responses (it is therefore perfectly possible to
encounter negative drift speeds). As we defined the LIT to evolve to zero without any input,
the two boundaries are at a

2 and −a
2 , with a the boundary separation. The noise that ends

up driving y(t) in Equation 5 has become auto-correlated, or so-called colored noise, and the
first passage times cannot be seen as those of a simple constant diffusion model with Wiener
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Figure 1 . Evidence integration and lagged LIT buildup for a constant drift diffusion model
with a Leaky Integrating Threshold. Plot (a) shows, response locked, the noisy evidence
accumulation signal x(t) (solid) and accompanying lagged and smoothed LIT signal y(t)
(dotted) for a trial with a high leak (λ = 100, red) and a trial with a low leak (λ = 5,
blue). Plot (b) shows the average evidence (solid) and LIT signals (dotted) for the LIT
hitting the upper boundary, again response locked, for the same two values of λ, but both
for three different levels of stimulus difficulty (v1 = 0, v2 = 0.1, v3 = 0.2). In plot (c), the
distributions of the accumulated evidence x(tr) taken at the moment the first boundary on
y is reached, i.e. |y(tr)| = a

2 , are shown. All previous combinations of leak and stimulus
difficulty are considered. The means of these distributions are indicated with dashed vertical
lines. Finally, plot (d) shows the respective choice RT probability density functions. For an
overview of the parameters that are kept constant, see Table 2 in Appendix II.
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noise. In Figure 1 we show both processes x(t) and y(t), for two values of λ. Figure 1a shows
how y(t) is a smoothed and lagged version of x(t), resulting in an increased signal-to-noise
ratio. The lower the λ (λ = 5 is in blue, λ = 100 in red), the more pronounced the effect.
Plot (b) shows the resulting mean signals. For λ = 100, y(t) tracks x(t) closely (red lines).
Plot c) shows the accompanying distributions of the accumulated evidence x(tr) taken at
the moment tr the first boundary on y is reached, i.e. |y(tr)| = a

2 . They take the form
of two clearly defined boundaries on the level of x as well, much like would be the case
for a normal diffusion model, without a LIT. For λ = 5 however, the smoothing and lag
are substantial. The resulting x(tr) distributions (blue) have more variance, because there
is a wider range of values the accumulated evidence can take at the moment of boundary
crossing playing out on the level of y. Moreover, the x(tr) distributions are pushed outwards
because a heavily smoothed process y(t) is typically closer to the starting point than the
underlying evidence accumulation process x(t), so it takes the y(t) signal longer to reach
one of the boundaries. Although the boundaries at a

2 and −a
2 are imposed on the y level,

x(tr) can be seen as a resulting effective decision boundary on the x level, leading to both
slower and more accurate choices when they are further away from the starting point. In
that sense, the LIT leak parameter λ is an interesting candidate for speed/accuracy trade-
off regulation. The increase in accuracy obtained with lower values of λ, seems to coincide
with some additional effective non-decision time, as can be seen in plot (d) from the shift
of the onset of the low leak (blue, λ = 5) choice RT distributions. This is in line with what
could be expected from the time shift appearing in Equation 6. Another feature of the LIT
that deserves to be highlighted becomes apparent in plot (c) when looking at the means of
the effective decision boundary distributions x(tr) (indicated with vertical dashed lines). In
the low leak (blue, λ = 5) case, the effective decision bound is not the same for all three
stimuli under consideration: the easier the stimulus, the further from the starting point
the effective decision boundary distribution corresponding to the correct choice. Although
there is still a common motor preparation bound for all stimuli at the level of the LIT signal
y(t), this result challenges the idea of a common decision bound for all stimuli at the level
of the original evidence accumulation signal x(t).

In what follows, we will perform two series of analyses showing evidence for the LIT in
data. This is all but straightforward as models without an analytical expression for their
likelihood are notoriously hard to estimate. For the first series of analyses, we will use a novel
likelihood free estimation method, the prepaid method (Mestdagh et al., 2019). Because
this method is still new, we will avoid adding extra layers of methodological complexity and
limit our analysis to what can be based on direct prepaid estimates of the DDM and its
LIT extension. A second series of analyses will be based on an analytical approximation
of the LIT, which is easier to estimate. We will revisit the first series of analyses, but also
include a comparison to the Ratcliff diffusion model (RDM), which includes extra inter-trial
variability parameters, and check a number of predictions that can be made in this context.

To avoid confusion, we will label traditional diffusion model parameters with a small
ring on top: boundary separation å, starting position x̊0, drift speeds v̊i, and for the Ratcliff
diffusion model (RDM), additional inter-trial variability parameters η̊ (variability on drift
speed) and sx̊0 (variability on starting position). To account for parameter redundancy, we
again fix σ̊ = 0.1.
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2 Direct parameter estimation with prepaid

2.1 Methods

Having established its main features, we will now show how the LIT extension of a
constant drift diffusion model can be fitted to data. Because the model does not have
an analytic expression, statistical inference is not trivial. Calculating probability density
functions through numerical integration as in Voss and Voss (2008) becomes extremely
slow as a 2D discretization is required, compared to the 1D discretization in the case of a
standard diffusion model. Simulating the model with an Euler-Maruyama approximation is
still straight forward, but simulation based techniques for inferring parameters (Beaumont
et al., 2002; Heard et al., 2015; Wood, 2010) are known to have convergence issues and
are tediously slow, especially if one wants to do many estimations to verify the method
and model’s recovery properties. We instead opt for a novel method of inference, which
has recently been coined as the prepaid method (Mestdagh et al., 2019). In this approach,
data is simulated for a comprehensive grid of parameter sets, covering the entire parameter
space of interest. The resulting massive look-up table is called a prepaid database. For
the particular case of choice RT models, a special grid is used that exploits a number
of symmetries and scaling properties to keep the final grid dimensionality low. In what
basically boils down to a parameter grid search, the prepaid grid is then used to find minimal
values of an objective function operating on its simulated probability density functions. We
will not go into the details of this technique (see Mestdagh et al. (2019) for an in-depth
treatment), but we will show its accuracy using a comprehensive simulation study. Because
many datasets, simulated as well as experimental, are to be evaluated in this grid, the one
shot cost of creating the prepaid database of probability density functions, quickly becomes
justified. We use the objective function of the D*M approach (Verdonck and Tuerlinckx,
2015), in order not to make shape assumptions on the non-decision distribution. The D*M
objective function capitalizes on the assumption that the non-decision time, whatever shape
it might have, is shared at least across some condition-response pairs. For instance, the error
responses of stimulus A and the correct responses of stimulus B could be considered to have
the same non-decision time distribution, without any extra constraints on the shape of
that distribution. We can now simply convolve (or stochastically add) the observed error
response distribution of stimulus A (also containing some non-decision time) with a model
distribution for the correct responses of stimulus B (not containing any non-decision time),
and vice versa (switching which is model and which is observed). This way, we end up with
two convolutions that each contain three parts: the decision time part of the error responses
of A, the decision time part of the correct responses of B and a non-decision part. For the
first convolution the non-decision part comes from the observed error response distribution
of stimulus A, for the second convolution, the non-decision part comes from the correct
response distribution of stimulus B. As a whole, the two convolutions should be identical
if the model matches the decision part of the observed data. By minimizing the difference
between these two convolutions (or a sum of these, given there are a lot of these condition-
response pairs to compare) we can now try and find the optimal parameters for the model.
In Verdonck and Tuerlinckx (2015) it is shown that this approach significantly reduces
estimation biases that are caused by the misspecification of the shape of the non-decision
time distribution (e.g., assuming a uniformly distributed non-decision time). For a more



THE LEAKY INTEGRATING THRESHOLD 10

rigorous explanation of the D*M approach, we refer the reader to this paper.
To test the method, we generate data from a broad range of parameter sets and estimate

them as described above. We assume four stimulus difficulty conditions (differing only in
drift speed vi with i = 1 . . . 4) covering a typical range of accuracy (70 and 90 percent, for
each direction of evidence). As is the case for most diffusion models of choice RT, there is
one redundant parameter in the model, so we fix σ = 0.1. In Figure 2, the relation between
actual and estimated parameters is shown in a set of scatter plots, for different numbers
of trials per condition (N = 10000, N = 300), as well as the coverage plots based on non-
parameterically bootstrapped confidence intervals. A coverage plot can be used to validate
the way confidence intervals of parameter estimates are calculated (in this case the method is
non-parametric bootstrap). The plot shows what fraction of the original parameter values
for which data was generated, fall outside of the confidence intervals estimated for that
data. For N = 10000 trials per stimulus condition (plot (a)), model parameters (boundary
separation a, starting point x0, inverse leak λ−1 and drift speeds vi) are recovered almost
perfectly, without any apparent biases. The exact distribution of test parameter sets is
related to the underlying parametrization of the prepaid grid, which we will not expand on
here (more details are provided in Appendix III); looking at the recovery plots however,
one can assess the effective range. The bottom right plot is a parameter coverage plot, with
each line representing the coverage for a different parameter. The horizontal axis indicates
p in the confidence interval [p2 , 1 −

p
2 ], varying from 0.05 to 0.95 with steps of 0.05. The

vertical axis shows the fraction q of the original parameter values falling outside of their
estimated confidence intervals. Perfect coverage manifests as a straight diagonal line for
each parameter. The obtained coverages are very acceptable in that sense. For N = 300
trials per stimulus condition (plot (b)), parameter recovery is of course a bit less accurate,
but looking at the coverage plot, confidence intervals on the estimates are in line with what
is expected. From these results, it’s safe to assume the estimation algorithm behaves as it
is supposed to.

The recovery results for the DDM (traditional diffusion model without variability pa-
rameters) and the RDM (traditional diffusion model with variability parameters) can be
consulted in Figures 15 and 16 in Appendix III.

2.2 Results

2.2.1 The occurrence of leak. With the fitting procedure in place, we now inves-
tigate to which extent the leak parameter as defined in the LIT extended constant drift
diffusion model (which we will, as a whole, also refer to as LIT), adds to a simple DDM
description of choice RT data. Because the DDM is nested in the LIT (the DDM is a LIT
with inverse leak equal to zero), we could simply check if the estimated inverse leak is sig-
nificantly higher than zero. However, because the LIT does not allow inverse leak estimates
below zero, this would not constitute a good test. To account for the fact that estimates
of inverse leak are automatically higher than zero, we take the following approach. For
each participant, we fit the LIT on both the original data, as well as data simulated with
parameters obtained through a traditional DDM estimate of the original data (a parametric
DDM bootstrap). If the LIT indeed adds something unique to the DDM description (i.e.,
something that could not have been simulated by the best fitting DDM), the inverse leak
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Figure 2 . Scatter plots of original versus recovered parameters for the LIT extended DDM.
Parameters are respectively boundary separation a, starting position x0, inverse leak pa-
rameter λ−1, and four drift speeds vi. The last graph represents the coverage of the boot-
strapped confidence intervals. Plot (a) shows the recovery results for N = 10000 trials per
stimulus condition, plot (b) for N = 300.

estimates based on the original data should be higher than the ones based on the DDM
parametric bootstrapped data.

We analyze a diverse collection of choice RT data sets. The first dataset is based on a
face/car discrimination experiment containing 32 participants (Philiastides et al., 2014a).
It comprises 8 stimulus conditions (4 difficulty levels for each of the face and car stimuli)
and 60 trials per condition. Because that number is rather low, we collapse the 4 stim-
ulus difficulty levels into 2 levels (difficult and easy) and do so for each of the face and
car stimuli. The second dataset pertains to a lexical decision making experiment, where
words are discriminated from non-words (Wagenmakers et al., 2008). The dataset covers 17
participants, 6 stimulus conditions (3 degrees of word and 3 degrees of non-word), and 160
trials per condition. The third dataset is based on a random-dot direction discrimination
paradigm, where a cloud of moving dots is judged to be going to the left or the right (Dutilh
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Figure 3 . Evidence for the inverse leak parameter. In this plot, within-person differences are
shown between the estimate of inverse leak based on the original data on the one hand and
on DDM bootstrapped data on the other. Values higher than zero indicate an inverse leak
estimate that is higher than what is to be expected according to a simple DDM. Accuracy
(blue) and speed (red) conditions are considered independently.

et al., 2018). It consists of 20 participants, each performing an extensive choice RT task that
can be split up in three different datasets according to three bias conditions (without bias,
with bias to the left, with bias to the right). There are 4 stimulus conditions (2 difficulty
levels, for each of the left and right directions), with trial numbers per condition varying
between 50 and 230. For the latter two datasets, there is separate choice RT data for a
speed and an accuracy instruction.

In first instance, we analyze the speed and accuracy conditions separately (all parameters
are allowed to differ), with only stimulus difficulty level to be accounted for in terms of
experimental conditions. In Figure 3 we show the participant distribution of the difference
between the inverse leak estimates based on the original data and those based on a DDM
parametric bootstrap, for both the accuracy and the speed condition.

We see that for the default accuracy instruction (blue), on the level of the participant
population, the inverse leak estimates are significantly greater for the original data than
the DDM bootstrapped data (two-sided paired t-test: p = 0.02, p = 0.02, p < 10−5 for
the random-dot data, the lexical data and the face/car discrimination data respectively).
For the speed instruction however, the inverse leaks estimated on the original data do not
significantly exceed the DDM bootstrap estimates (p = 0.7 for the lexical data; for the
random-dot data, they are even slightly below with p < 10−5). It should be stressed that
the distributions plotted in Figure 3 are based on individual participant estimates and do
not convey the uncertainty of their statistical means, which are the quantities that are
tested.

The fact that the leak only contributes additional explanatory power in the accuracy
condition is completely inline with its supposed effect on SAT. For low values of inverse leak,
we don’t expect the leak estimate to significantly exceed the benchmark estimate based on
DDM bootstrapped data.

2.2.2 SAT manipulation: leak versus boundary separation. To address the
question of selective parameter influence of the SAT manipulation more carefully, we esti-
mate the speed and accuracy conditions together, in a single model. We fix all parameters
across speed and accuracy conditions, except for a and λ−1, respectively (details on how
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Figure 4 . Boundary separation a versus inverse leak λ−1 as a mechanism for SAT. In
this plot, within-person differences fita − fitλ−1 of the LIT fit for boundary separation on
the one hand and inverse leak on the other is shown. Participants of both speed/accuracy
experiments are included. Positive values indicate a better fit for the inverse leak parameter
as a mechanism for SAT.
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Figure 5 . Differences in mean non-decision time estimates between LIT and DDM. Accuracy
condition is in blue, speed condition in red.

this is done with the prepaid method can be found in Appendix IV). Because both models
under consideration have the same amount of parameters, we can simply compare fit to
determine the better model. The difference in fit is shown in Figure 4. Both data sets with
a speed accuracy manipulation, the larger random-dot data set (N=60), and to a lesser
extent the lexicon data set (N=17), support the conclusion that inverse leak outperforms
boundary separation as a mechanism for SAT (p < 10−5 and p = 0.12, respectively).

2.2.3 Non-decision time: LIT versus DDM. Equation 6 suggests that the LIT
can account for some of the stimulus independent non-decision time by itself, which should
lead to smaller non-decision time estimates, especially in the accuracy condition where the
inverse leak is higher. We estimate mean non-decision time by subtracting the mean of
the model distribution (obtained through the initial D*M procedure) from the mean of
the empirical distribution. In Figure 5 we plot the DDM-LIT differences in mean non-
decision time Ter for all experiments combined, using the initial, non-restricted estimates.
We see that the mean non-decision time estimated under the LIT assumption is indeed
always smaller than its DDM counterpart (for all participants, across all experiments and
conditions), and that this effect is most pronounced in the accuracy condition.

Another way to differentiate LIT from DDM is to look at the difference between Ter
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Figure 6 . Differences in mean non-decision time estimates between the accuracy and the
speed condition, for both the DDM (dashed line) and the LIT (solid line).

estimates under a SAT manipulation. If SAT is indeed driven by the inverse leak of a LIT
and not simply by the boundary separation in a DDM context, there should be a noticeable
difference between speed and accuracy estimates of non-decision time for a DDM analysis,
that would largely disappear in a proper LIT analysis. Figure 6 shows the distributions of
these differences for both a DDM and a LIT analysis. As predicted, there are significant
differences between the estimates of Ter in the speed and accuracy condition (p = 0.02, p <
10−5 for lexicon and random-dot data respectively) for the DDM analysis, but they largely
disappear in the LIT analysis (p = 0.7, p = 0.1).

3 Approximating the LIT as a functionally reparameterized drift diffusion
model

To get a better understanding of the reasons why the LIT performs better than a simple
threshold, we use an analytical approximation of the LIT that presents it as a functionally
reparameterized standard diffusion model. Based on the results of (Hagan et al., 1989),
the choice RT distributions of the LIT can be reduced to those of a DDM with a more
complicated influence of stimulus and SAT conditions on model parameters.

3.1 Methods

Equation 6 suggests that, assessed through the lens of a traditional DDM, the LIT
predicts a starting position that is dependent on the stimulus. This would result in a
violation of a common assumption regarding the selective influence of the stimulus condition
on that level of analysis, i.e., that only drift speed is affected by the stimulus. We can
incorporate this relationship into a standard diffusion model by defining the effective starting
position for stimulus i as

ẋ0,i = ẋ0 + v̇i

2λ̇
,

with drift speed v̇i, shared starting position ẋ0 and pseudo leak λ̇, parameters that have
to be estimated in the context of a standard diffusion model. We have dotted the symbols
to avoid confusion with earlier notations. A problem with this expression is that ẋ0,i can
exceed boundaries ȧ

2 or − ȧ
2 , which is of course not allowed. We solve this problem by using

a slightly adjusted expression that prevents this:
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parameter grid values
a 0.04, 0.06, 0.08, . . . , 0.2
x0 [−0.1, 0, 0.1]× a
λ−1 0.001, 0.05, 0.1, 0.15, . . . , 0.5

fixed values
vi, with i = 1, . . . , 7 0.15, 0.1, 0.05, 0,−0.05,−0.1,−0.15

Ter 0.3
Table 1
Parameter grid used for simulating a broad selection of LIT choice RT data. All combina-
tions of the values listed for a, x0 and λ−1 are used. For each combination, the same seven
values of vi and Ter = 0.3 are used.
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Figure 7 . The distribution of the slopes ṡ estimated for DDM simulated data (black), high
leak LIT simulated data (red) and low leak LIT simulated data (blue).

ẋ0,i = ȧ

π
arctan(tan(πẋ0

ȧ
) + ṡv̇i),

with ṡ a simplified slope parameter. Given this expression, estimates of slope ṡ should
become greater than zero for data generated with low values of the original leak parameter
λ. To check if this holds in practice, we simulate a broad selection of choice RT data from all
possible combinations of the a, x0, and λ−1 values given in Table 1, consistently assuming
seven stimuli with drift speeds vi (i = 1, . . . , 7) given in that same table. For each set of
parameters, 300 trials were simulated for each of the seven stimuli. Using a DDM with
a starting point/drift speed dependency as described above, we estimate the parameters
of all these simulated data. The probability density functions of the underlying DDM are
calculated as in Voss and Voss (2007), the objective function again is D*M, and finally, as a
global minimization heuristic we opt for differential evolution (Storn and Price, 1997). We
repeat this exercise for data generated with a normal DDM. The same parameters are used
as in Table 1 for the simulations, ignoring the LIT specific λ parameter.

In Figure 7, the estimated slopes ṡ are shown for LIT and DDM generated data. As
expected, data simulated with the DDM shows no clear sign for ṡ, nor does data simulated
with a high leak LIT (λ−1 ≤ 0.1), which is close to a simple DDM). LIT data simulated
with a low leak (λ−1 > 0.1), on the other hand, does show a clear positive ṡ.
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Figure 8 . Density of slopes ṡ - a proxy for inverse leak - for all three experiments combined.
The colors red and blue are used to distinguish between speed and accuracy conditions.

3.2 Results

3.2.1 Reverifying the occurence of leak. Figure 8 shows the distribution of
slopes ṡ found for all datasets combined, seperated for speed (red) and accuracy conditions
(blue). Because negative slopes are possible in this model, and DDM does not create a bias
on the leak parameter (see Figure 7), we can perform a simple test of the mean with regards
to zero, without the need for bootstrapping as we did in the case of direct estimation.

In line with the results shown in Figure 3, estimated slopes ṡ - which can be seen
as a proxy for inverse leak - are significantly larger than zero for the accuracy condition
(p = 0.004, p < 10−5, p < 10−5 for the lexicon, random dot and face/car data, respectively),
and not for the speed conditions. On the contrary, a slightly negative result was found for
the speed condition of the random-dot experiment (p = 0.04).

This suggests that the assumption that a change in stimulus difficulty only influences
the drift speed is indeed violated in the accuracy condition in the context of the DDM
(slopes introduce bias on the starting position that depends on the drift speed and thus
differs from stimulus to stimulus) and that the LIT can account for at least some of it.

3.2.2 Leak outperforms inter-trial variability of starting position and drift
speed. In Figure 9, we show the differences in fit between three single parameter exten-
sions of the DDM. We find that inverse leak λ−1 outperforms both inter-trial variability
of starting position and drift speed in the accuracy condition (p < 10−5 and p < 10−5 re-
spectively, for all datasets combined). In the speed condition, inverse leak also outperforms
variability of drift speed (p < 10−5), and performs comparable to variability of starting po-
sition (p = 0.4). Comparing between the two variability parameters of DDM, it can be seen
that variability of drift speed is more important for the accuracy condition (p < 10−5), and
variability of starting position is more important in the speed condition (p < 10−5). Looking
at the smaller lexicon dataset independently (N=17), results were not always significant,
but always with the correct sign.

3.2.3 Selective parameter influence of SATmanipulation: leak versus bound-
ary separation. As it stands, boundary separation is typically considered to be the
parameter that operationalizes SAT regulation. This reflects another common selective
influence assumption for the DDM, namely that drift speeds do not change under SAT
manipulations, nor does non-decision time. However, traditional diffusion modeling results
from the literature (Lerche and Voss, 2018; Rae et al., 2014; Zhang and Rowe, 2014) suggest
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Figure 9 . Differences in fit between three single parameter extension of the DDM: inverse
leak λ−1, variability of starting position zr and variability of drift speed η. Each box plot
shows the distribution of the participants differences in fit between an extension that uses
the parameter labeled on the left versus the right. The more the distribution leans to the
side of a parameter, the more that parameter outperforms the other. The colors red and
blue are used to distinguish between speed and accuracy conditions.

that the parameter influence of a SAT manipulation is not limited to a change in boundary
separation. There seems to be an additional change in non-decision time (smaller for the
speed condition) and drift speed (also smaller for the speed condition). In what follows
we investigate if a leak driven SAT, predicts this typically observed pattern of parameter
selectivity for the SAT manipulation.

In other words, we want to investigate what can be predicted about the parameter
influence of a SAT manipulation through the lens of a traditional diffusion analysis, using
either boundary separation, or leak as the operative SAT mechanism. We explore three
distinct cases: data generated with a constant drift diffusion model and SAT driven by
simple boundary separation å, data generated with a LIT extended version of said model but
SAT still driven by — now motor level — boundary separation a, and finally, data generated
with the LIT extended version but SAT driven by leak parameter λ. We simulate data for
these three combinations using parameters in the range of what we found from analyzing
the datasets discussed above. More specifically, for the DDM we use basic parameters
å = 0.1, x̊0 = 0, T̊er = 0.3 and v̊i = [0.2, 0.1,−0.1,−0.2] with i = 1, . . . , 4 representing four
different stimulus conditions. As SAT driving parameter we use boundary separation åc =
[0.1, 0.2], with c = 1, 2 representing speed and accuracy conditions. For the LIT extended
version we use basic parameters a = 0.1, x0 = 0, Ter = 0.3 and vi = [0.2, 0.1,−0.1,−0.2]. As
SAT driving parameter we use either boundary separation ac = [0.1, 0.2], or leak parameter
λc = [500, 5].

To approach realistic effect-sizes, we simulate 300 trials for each of the 4 stimuli, both in
a speed and an accuracy condition. We then perform a traditional diffusion analysis accord-
ing to the BIC-optimal parameter selectivity found in Rae et al. (2014). More specifically,
this means that drift speed is the only parameter that can differ across stimulus conditions,
and that the SAT manipulation is allowed to be driven by changes in boundary separation,
drift speed and non-decision time. As this is a traditional diffusion analysis the estimated
parameters are labeled with a small ring on top. For each of the three combinations de-
scribed above, we simulate 100 datasets and repeat the estimation procedure, to get an idea
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about theoretical confidence intervals. To remain consistent with standard methodology
(we want to be able to compare with previous results from literature), we opt for a maxi-
mum likelihood estimation procedure with a uniformly distributed non-decision time with
mean T̊er and width ˚sTer, as implemented in Voss and Voss (2007). Inter-trial variability
for starting position and drift speed are allowed as condition common parameters for the
same reason.

The results are shown in Figure 10. If boundary separation is the parameter driving SAT
(first two rows), as expected, no other parameters are influenced by the manipulation. If
leak parameter λ is driving SAT, however, mean non-decision time T̊er and to a lesser extent
drift speed v̊i, also seem to be affected, more specifically with the speed instruction leading
to smaller non-decision times and smaller drift speeds. This prediction is in agreement with
the analyses of Rae et al. (2014), Zhang and Rowe (2014), and Lerche and Voss (2018), that
find similar changes in non-decision time and/or drift speed above and beyond the change
in boundary separation.

We run the same diffusion analysis on the two datasets in this paper that have a SAT
manipulation. The results are shown in Figure 11 as density plots of the within-person
differences between speed and accuracy conditions for boundary separation ∆å = åacc −
åspeed, mean non-response time ∆T̊er = T̊ accer − T̊ speeder and ∆v̊ = 1

4
∑4
i=1(|̊vacci | − |̊v

speed
i |),

respectively. For all these differences, we find significant results in both the random dot
data (p < 10−5, p < 10−5, p < 10−5, respectively), and the lexicon data (p < 10−5, p = 0.03,
p = 0.05, respectively). These results again echo what is found in the literature (Lerche
and Voss, 2018; Rae et al., 2014; Zhang and Rowe, 2014), i.e., apart from an increase in
boundary separation, a traditional diffusion analysis reveals additional increases in non-
decision time and drift speed, for the accuracy condition. From the three theoretical cases
studied above, this seems to be compatible only with a leak driven SAT.

Finally, we check if the LIT approximating diffusion model introduced in the beginning
of this section is indeed able to remove the influence of the speed-accuracy manipulation on
drift speeds (we do not predict this for boundary separation or non-decision time, which are
still parameterized in a way that should change under leak induced SAT). In Figure 12 we
plot the difference between the absolute values of the drift speeds in the speed and accuracy
condition, averaged across stimuli. In line with the last plot of Figure 11, we see that the
absolute drift speeds are larger in the accuracy condition when estimating a normal DDM
(p < 10−5 for the random dot data; p = 0.004 for the lexicon data). This difference is
no longer significant when estimating the LIT approximating diffusion model (p = 0.1 and
p = 0.7, respectively).
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Figure 10 . Traditional maximum likelihood estimates of three sets of simulated data, each
generated with a different model/SAT mechanism (see row labels). In the recovery, SAT
effects are allowed on boundary separation å, drift speeds v̊i and non-decision time T̊er,
while stimulus effects are only allowed on v̊i. Speed condition bootstrap distributions are
in red, accuracy condition bootstrap distributions are in blue.
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Figure 11 . Influence of a SATmanipulation on traditional diffusion model parameters in real
data (random-dot and lexicon data combined). The same design and estimation procedure
was used as for the theoretical predictions. Each density plot shows the distribution of the
within-person shifts for the respective parameter going from speed to accuracy conditions.
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Figure 12 . Influence of SAT on drift speed, for both LIT (∆v̇, solid line) and DDM (∆v̊,
dotted line). Each line represents the participant distribution of the difference between the
absolute values of drift speed for the speed and accuracy condition respectively, averaged
across stimuli.

4 Applied to the Leaky Competing Accumulator and Ising Decision Maker

Finally, we briefly investigate the effect of the LIT on more complicated models of choice
RT such as the Leaky Competing Accumulator (LCA) and the Ising Decision Maker (IDM).
Both models are two-dimensional evidence accumulators, and are given a separate, single
boundary LIT for each dimension. The two LITs then race each other for the eventual
choice. Applying a LIT in this way, results in much of the same effects we found when ap-
plying the LIT to the DDM. Figures 13 and 14 are structured in the same way as Figure 1,
but now deal with the LIT extensions of the LCA and the IDM respectively. Analogous to
the LIT extended DDM, the two LIT signals (y1(t), y2(t)) are lagging the actual evidence
accumulation signals (x1(t), x2(t)), and have an increased signal-to-noise ratio because of
the LIT’s smoothing effect. Again, this leads to effective decision boundary distributions
and a shift in effective non-decision time for low leaks. Each trial’s effective decision bound-
ary however, now has double coordinates and can be represented as a point (x1(tr), x2(tr))
(with tr the moment the first LIT reaches its boundary). The effective decision boundary
distributions this amounts to, are, for both figures, shown in plot c) as two-dimensional
distributions of points. Interestingly, for lower values of λ, the LIT creates an effective
boundary distribution on the evidence space that starts conforming to the associated min-
imum of the potential surface underlying the decision dynamics — the solid black lines in
the background of plot c) are isoclines of this surface (for more details on potential surfaces,
see Verdonck and Tuerlinckx (2014)). This seems to be the case for both the IDM and the
LCA. Finally, plot d) shows that the LIT can account for a SAT dependent non-decision
time, also for these more complicated models. Fitting these advanced models to data is
beyond the scope of this paper.
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Figure 13 . Evidence integration and lagged LIT buildup for a LCA with Leaky Integrating
Thresholds. Plot (a) shows, response locked, the noisy evidence accumulation signal (solid)
and accompanying lagged and smoothed LIT signal (dotted) for a trial with a high leak
(λ = 200, red) and a trial with a low leak (λ = 5, blue). Plot (b) shows the average evidence
(solid) and LIT signals (dotted) where the first LIT wins the race, response locked, for the
same two values of λ, but both for three different levels of stimulus difficulty. In plot (c),
the distribution of evidence values (x1, x2) at which the first passage on the level of y1
or y2 is reached, is shown. Finally, plot (d) shows the respective choice RT probability
density functions. For an overview of the parameters that are kept constant, see Table 3 in
Appendix II.
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Figure 14 . Evidence integration and lagged LIT buildup for an IDM with Leaky Integrating
Thresholds. Plot (a) shows, response locked, the noisy evidence accumulation signal (solid)
and accompanying lagged and smoothed LIT signal (dotted) for a trial with a high leak
(λ = 200, red) and a trial with a low leak (λ = 5, blue). Plot (b) shows the average evidence
(solid) and LIT signals (dotted) where the first LIT wins the race, response locked, for the
same two values of λ, but both for three different levels of stimulus difficulty. In plot (c),
the distribution of evidence values (x1, x2) at which the first passage on the level of y1
or y2 is reached, is shown. Finally, plot (d) shows the respective choice RT probability
density functions. For an overview of the parameters that are kept constant, see Table 4 in
Appendix II.
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5 Discussion

In this paper, we propose a Leaky Integrating Threshold process boundary as an alter-
native for the traditional simple threshold for evidence accumulation models of choice RT.
This relaxes the assumption that the executive process leading to the physical response is
– apart from receiving the choice once it has been decided – independent of the evidence
accumulation process. The LIT is defined as a simple leaky integrator of the evidence vari-
able(s) of the decision model. The integrated signal is associated with motor preparation
and can be seen as a lagged and smoothed version of the original evidence accumulation
signal. It is the latter signal that is compared to a final threshold. In other words, the
primary process of evidence accumulator hands control over to the motor accumulation
process, which becomes the main determinant of the eventual choice.

Importantly, the smoothing of the evidence accumulation process happening at the LIT
stage makes the effective noise of the final accumulator auto correlated, which is a funda-
mental difference from most choice RT models, including the Leaky Competing Accumulator
and the Urgency Gating Model with evidence filtering (Cisek et al., 2009). Although both
of these models contain some form of leakage, it is not in the context of double integration
of system-noise, which is the fundamental mathematical feature of the LIT setup. We view
this as the main novelty of the work, which we believe can have wider implications on how
(perceptual) decisions are being modelled.

Applied to the simple constant drift diffusion model, the LIT is shown to be superior,
both with and without inter-trial variability. We replicated these results across all three
datasets. Additionally, as the LIT increases the effective signal-to-noise ratio of the evidence
accumulation signal at the expense of response time, the LIT leak parameter can be seen
as an alternative to boundary separation for operationalizing SAT regulation. We tested
this alternative formally and showed that the leak parameter is better at explaining the
differences between speed and accuracy conditions than the boundary separation.

We obtained further validation of our model through the lens of traditional diffusion
model analyses. First, we show how the LIT can be approximated by a diffusion model
that is functionally reparametrized. More specifically, a change in drift speed on the level of
the evidence accumulation process within the DDM-LIT architecture, when looking at the
corresponding parameters of a traditional diffusion model approximating that architecture,
results in a change of not only the drift speed, but also the starting position and the non-
decision time. This predicts a violation of the selective influence of stimulus difficulty on
drift speed in a DDM analysis where starting position is also allowed to vary for different
levels of stimulus difficulty. In strong support of the LIT, we discovered this violation in all
three datasets, at least for the accuracy condition, where the effect of the leak parameter
should be strongest.

Moreover, generating choice RT data with the leak as the underlying driver for SAT and
then performing a traditional diffusion analysis (without allowing starting position to vary
in tandem with drift speed), resulted in a specific pattern of SAT sensitive parameters: in
the speed condition, we observed decreases in non-decision time and drift speed, along with
decreases in boundary separation. This pattern is in line with what is found previously for a
similar analysis of the data and with what has been repeatedly found for SAT manipulations
in the literature (Lerche and Voss, 2018; Rae et al., 2014; Zhang and Rowe, 2014). We find
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the same pattern of SAT sensitivity in our own analyses. Crucially, in a LIT compatible
diffusion analysis (that allows starting position to covary with drift speed for changing
stimulus difficulty levels), drift speed should no longer change under SAT manipulation.
This was fully corroborated in both SAT datasets.

Finally, we showed that for more advanced two-dimensional models of decision making
like the LCA or the IDM, the LIT results in effective decision boundaries that take the
shape of the underlying potential function, constituting a more natural decision convergence
criterion.

5.1 Connection with earlier models of choice RT

Formally, the key property of the LIT is that the leaky integration is done on already
stochastically integrating evidence and that the system-noise driving the primary evidence
accumulator is, therefore, doubly integrated. This results in auto-correlated noise on the
level of the final motor accumulator, which is the main feature that sets the LIT apart from
traditional diffusion models. The interplay between this type of noise and an absorbing
boundary is far from trivial (Hagan et al., 1989), and gives the model a unique signature,
with important implications for commonly accepted assumptions about what influence ex-
perimental manipulations should have on traditional diffusion model parameters.

The cascade model as described by McClelland (1979) adopts a comparable approach
with regards to the deterministic part of the accumulation processes, but is quite different
in the way it introduces variability in choice responses. In contrast to even a standard
diffusion model, variability in the cascade model is not obtained with the integration of
system noise throughout the trial, but added in through the variability of parameters. In
a sense, the LIT marries the idea of cascading explored by McClelland with the stochastic
integration typical for normal diffusion models. This fundamentally results in a double
integration of system-noise, which brings the LIT into a different class of diffusion models
(with auto-correlated noise).

Moreover, there are a number of functional/interpretational differences between the
LIT and cascade models. Firstly, in most cascade models, the response execution (final
stage in the cascade) is assumed to be a discrete event. In the LIT, the motor system is
continuously active and it is the properties/dynamics of the motor accumulator itself that
determine the decision – not the stage prior. In other words, the motor preparation deserves
a dedicated level in the cascade. This aspect of the LIT design is motivated by recent neural
observations in the literature (as we discussed in the Introduction) and in this sense the
LIT can be thought of as having a more biologically plausible architecture.

Secondly, in cascade models, the layers are forever connected in the same way, with
no motivation or pathway towards the implementation of external regulation. In principle,
in the LIT (although it was not required for the applications analyzed in this paper), the
motor accumulator should terminate and return to baseline after motor execution (as one
would expect electrophysiologically), while the primary accumulator can continue to linger
on past the response. In scenarios in which a secondary decision is required (or triggered),
the motor accumulator can (will) start up again and proceed to receive information from the
primary accumulator. This would open up possibilities for modeling more advanced features
of decision making, like change-of-mind decisions, post-decision confidence reporting, etc.
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We discuss, qualitatively, how such secondary decisions might be implemented within the
LIT framework below.

Furthermore, we compare the idea of using the LIT for triggering the actual decision
with the traditional view of using a simple threshold, be it fixed or collapsing over time.
One important difference between these three accounts is the value of accumulated evidence
at the moment the actual decision is made. For a fixed boundary this is obviously the same
regardless of stimulus difficulty. For the collapsing bounds criterion, stronger stimuli hit the
bounds for higher values of accumulated evidence, seeing the collapse has progressed less
for earlier responses. This leads to stimulus-dependent values of accumulated evidence at
the moment of decision, with higher values for stronger stimuli. A similar pattern emerges
from the LIT, albeit through an entirely different mechanism, and is also born out in EEG
data (Philiastides et al., 2014b).

Similar in all three SAT mechanisms is that they do not fundamentally interfere with
the actual evidence accumulation process. The main difference is the way they use the noisy
accumulated evidence to come to a decision. For both fixed and collapsing bounds, SAT
is manipulated by changing the evidence criterion (require more accumulated evidence or
make do with less). In the case of collapsing bounds the same philosophy applies, but a
continuously encroaching deadline is built in. SAT can be controlled by either changing the
initial value of the threshold or the rate at which it collapses. In both cases however, the
bounds only monitor the noisy accumulated information signal at that given point in time,
and do not “remember” what they already saw before. In the LIT, instead of changing the
end criterion, time integration is used to make the signal less noisy. In a setting with higher
accuracy, the boundary is no longer simply monitoring the noisy evidence accumulation
signal for an immediate crossing, but uses a time smoothing window to increase the signal–
to–noise ratio and avoid an unwanted accidental crossing. In other words, the boundary has
a leaky memory, and uses this property to consider past evidence in the accumulated signal,
rather than just its current state. Mathematically, when the leak parameter approaches
infinity, the system becomes “memoryless” and the LIT reduces to a simple DDM.

Finally, there are other models that share some aspects with the LIT explored in this
paper. For instance, the Leaky Competing Accumulator also has a leak parameter and
one of the Urgency Gating Models proposed in Cisek et al. (2009) performs some kind of
filtering on the level of the input. However, none of these models share the LIT’s doubly
integrated system-noise which has a specific effect on its first passage times (Hagan et al.,
1989). In our analyses we limit ourselves to comparisons with the benchmark DDM and
RDM, of which the LIT is a natural extension. It is possible, however, that another model
could resolve some of the same issues in a different way, or that vice versa the LIT may
provide a viable alternative explanation for the paradigms and data used to validate these
other models. For example, the gating in Cisek et al. (2009) is used as a way to prevent
early random fluctuations of the input to trigger premature responses. The LIT on the
other hand smooths out fluctuations on the level of the accumulated evidence rather than
acting immediately on the level of the input signal, also resulting in robustness to early
random fluctuations of the input, if they were to be considered. Ultimately, it would be an
interesting exercise to check how different models compare to each other under all commonly
used experimental paradigms. This, however, would also include combinations of models
that are not mutually exclusive – the LIT can be combined with almost every existing model
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of evidence accumulation, creating a host of new models. The comparison could be done
by straight forward model selection, or perhaps just as importantly, in terms of parameter
influence of experimental manipulations. In sum, formally comparing all existing models of
choice RT on a variety of benchmark choice RT data is work long overdue, but it would be
a project in its own right and is beyond the scope of this paper.

5.2 Future utility of the LIT

To our knowledge, this is the first formal, fully estimatable model in which a separate
(secondary) motor accumulation process becomes part of the causal chain of events, by
receiving stochastically accumulated decision evidence and ultimately taking control over
the primary accumulation process to drive the final decision. We view this as the main
novelty of the work, which we believe can have wider implications in how (perceptual) de-
cisions are being modeled beyond the specific application of the SAT. For example, the
LIT could be relevant in scenarios involving integration of non-stationary evidence with
varying degrees of temporal uncertainty (Ossmy et al., 2013) by controlling the integra-
tion time constant and adjusting the leakage from the primary to the motor accumulator,
such that slow leakage could be used to limit the integration of pre–signal noise, simi-
lar to what a leak on the decision level would accomplish. One advantage of the LIT
over previous work is that commitment to a choice is driven by the motor (secondary)
accumulator, which in turn affords additional flexibility in the primary accumulator that
could continue to accumulate past the decision and potentially inform secondary (overt)
decisions involving additional post-decisional deliberation (e.g.“change-of-mind” decisions,
post-decision metacognitive appraisal, etc) (Pleskac and Busemeyer, 2010; Resulaj et al.,
2009; van den Berg et al., 2016).

For example, consider the case of change-of-mind decisions or double responses (Evans
et al., 2020; Resulaj et al., 2009). Because the LIT is in effect a separate motor accumulator,
resetting it after a motor action has been triggered does not reset the primary evidence
accumulator feeding into it. In the time it takes to complete the motor action itself (time for
the actual movement to take place, button press detection) the primary accumulator could
have accumulated additional evidence. Immediately after (or even during) this resetting,
the motor accumulator could resume accumulating, swiftly picking up on the new evidence
accumulated by the primary accumulator in the interim. In turn, this second wave of motor
accumulation can enable the selection of a different response in cases where the new evidence
now points towards the alternative choice.

The traditional modeling approach for secondary responses in simple threshold systems,
also consists of continuing the primary evidence accumulation process after the first decision
has been made and monitoring the alternative boundary (Evans et al., 2020), sometimes
accompanied by an additional change to the threshold value for this boundary (Resulaj et al.,
2009). Although this approach can account for mostly corrective second responses and fewer
double responses when decision accuracy is emphasized (two important qualitative features
that are observed in this context), it still cannot account for the experimentally observed
right skew in the double response times (the time between the first and second response)
(Evans et al., 2020). The architecture of the LIT, however, allows the model to properly
account for all three observed features. In contrast to the unperturbed primary evidence
accumulator, the motor accumulator that triggers the actual response is reset, and has to
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evolve to threshold-level again. This results in a typical first passage time distribution, which
is right skewed. By resetting the motor accumulator but not the evidence accumulator, the
second response can benefit from the continued evidence processing after the first decision,
which is required for the second responses to be mostly corrective.

Finally, our general modelling approach may also prove useful for linking other func-
tionally distinct but overlapping processes in the causal chain of events from stimulus to
choice like early encoding, memory retrieval (Cox and Shiffrin, 2017), etc.

5.3 Potential neurobiological implementation of the LIT

The observed violations of commonly held assumptions about selective parameter influ-
ence of typical experimental manipulations in the DDM and the way the LIT can resolve
them are intriguing since they highlight crucial points of departure from conventional mod-
elling and electrophysiological work. The literature has focused extensively on the notion of
a single (common) boundary regardless of stimulus condition/difficulty, with evidence ar-
riving from both animal and human work (Kim and Shadlen, 1999; O’Connell et al., 2012;
Ratcliff and McKoon, 2008; Shadlen and Newsome, 2001). More recent evidence, however,
paints a more complex picture with additional brain responses relating to boundary changes
that scale with the degree of decision difficulty as predicted by the LIT, both at the level
of individual neurons as well as at the macroscopic level of scalp responses (Bennur and
Gold, 2011; Ding and Gold, 2010; Gherman and Philiastides, 2015; Philiastides et al., 2014a;
Scott et al., 2017). Similarly, neurobiological work for SAT has focused nearly exclusively
on boundary adjustments (Bogacz et al., 2010; Forstmann et al., 2008b; Ivanoff et al., 2008),
however, more recent work across species has also provided support for changes in the rate
of evidence accumulation and non-decision times (Hanks et al., 2014; Heitz and Schall, 2012;
Wenzlaff et al., 2011), in line with predictions stemming from the LIT.

The LIT formulation also has some interesting neurobiological implications as it high-
lights the need to differentiate between two inter-related but largely separate processes that
are likely to take place in different brain structures. While the former can be independent
of sensory and response modality, as has been reported in regions of the dorsolateral pre-
frontal cortex (DLPFC) and lateral intraparietal sulcus/cortex (LIP/IPS) (Filimon et al.,
2013; Heekeren et al., 2006; Philiastides et al., 2011; Ploran et al., 2011), the latter would
be tightly coupled with structures controlling the specific motor effectors involved in imple-
menting the decision (Donner et al., 2009; Filimon et al., 2013; Tosoni et al., 2008).

We speculate that at the neural level the interplay between evidence and motor ac-
cumulation will be implemented via an interaction between prefrontal and parietal re-
gions known to be involved in evidence accumulation (e.g. left DLPFC, LIP/IPS) and
(pre)motor structures previously linked to perceptual decision making (e.g. supplementary
and pre-supplementary motor areas; SMA/pre-SMA). The latter structures in particular,
have traditionally been thought to be directly involved in implementing the SAT by con-
trolling decision boundaries in the brain (Bogacz et al., 2010; Forstmann et al., 2008a;
Ivanoff et al., 2008). Using simultaneous EEG-fMRI, however, we have recently shown
that the SMA/pre-SM has an even more intricate role in decision making by capturing
the full moment-by-moment (temporal) dynamics of the process of evidence accumulation
and covarying systematically with traditional evidence accumulation regions in prefrontal
and parietal cortex (Pisauro et al., 2017). These recent findings paint a picture in which
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(pre)motor structures might take a more elaborate role in decision making, extending be-
yond a mere involvement in boundary adjustments, consistent with the general framework
of the LIT.

Ultimately, the LIT (as any other computational account of decision making) will require
independent neurobiological validation. Overall, our work provides a new, viable — and
likely more biologically plausible — alternative to the traditional simple threshold evidence
accumulation models of choice RT. As such it offers a novel benchmark against which to
compare neural data to offer further neurobiological validation for the proposed evidence-
vs-motor accumulation processes.
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Appendix I

Integral A
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Integral B

∫ t

0
dt′t′eλ(t′−t) = e−λt

∫ t

0
dt′t′eλt

′

= e−λt
[
eλt
′(λt′ − 1) + 1

λ2

]t
0

= 1
λ2 (λt− 1) + 1

λ2 e
−λt

= 1
λ

(t− 1
λ

+ e−λt

λ
)

Integral C

Stochastic process C in Equation 5 is a weighted time-integral of a Wiener process,
which is normally distributed at every time point, with mean zero. We can calculate its
variance at every time point.

In order to do this, we first calculate an intermediary result:

d(eλ(s−t)Ws) = λeλ(s−t)Wsds+ eλ(s−t)dWs

1
λ
d(eλ(s−t)Ws) = eλ(s−t)Wsds+ 1

λ
eλ(s−t)dWs

eλ(s−t)Wsds = 1
λ
d(eλ(s−t)Ws)−

1
λ
eλ(s−t)dWs

Integrating this result gives us integral C in Equation 5:
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∫ t

0
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{
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}
Using the Itô isometry,

E

[(∫ t

0
HsdWs

)
2
]

= E

[∫ t

0
H2
sds

]
,

we can calculate the variance of the process at time t:
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Appendix II

parameter value
σ 0.1
a 0.1
x0 0

vi, with i = 1, . . . , 3 0, 0.1, 0.2
Ter 0

Table 2
Parameters for the LIT extension of the constant drift diffusion model as used for the plots
in Figure 1. Boundary separation a = 0.1 is used on the level of the LIT and corresponds
to an upper boundary of 0.05 and a lower boundary of −0.05.

parameter value
c 0.1
γ 1
κ 10

v1,i, with i = 1, . . . , 3 0.15, 0.2, 0.3
v2,i, with i = 1, . . . , 3 0.15, 0.1, 0

Ter 0
Table 3
Parameters for the LIT extension of the LCA as used for the plots in Figure 13 (notation
according to Verdonck and Tuerlinckx, 2014). Single boundary thresholds of 0.08 are used
on the level of the LITs.
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parameter value
β 1

28
D 0.05
N 8000
W+ 210000
W− 33600
Θ 205800

B1,i, with i = 1, . . . , 3 11000, 11200, 11400
B2,i, with i = 1, . . . , 3 11000, 10800, 10600

Ter 0
Table 4
Parameters for the LIT extension of the IDM as used for the plots in Figure 14 (notation
according to Verdonck and Tuerlinckx, 2014). We use a spontaneous relaxation time of 2
seconds. Single boundary thresholds of 0.5 are used on the level of the LITs.

Appendix III

The prepaid method as described in Mestdagh et al. (2019), application 3, internally
uses a special parametrization of diffusion models where a free time-scaling parameter is
added while the boundary separation is fixed to some constant. Exactly the same choice RT
distributions can be reached as before, but the time-scaling parameter has the advantage
that it can be estimated analytically (conditional on the other parameters), effectively re-
ducing the amount of parameters that have to be accounted for in the prepaid database. The
prepaid grids are cast as follows (for fixed boundary separation 0.1 and a free time-scaling
parameter): starting position relative to boundary separation zr is uniformly distributed
between 0.1 and 0.9 for all models (in this notation zr = 0.5 means no bias), inverse leak
λ−1 is uniformly distributed between between 0 and 4 (only for LIT), inter-trial variability
on relative starting point szr is uniformly distributed between 0 and 1 (only for RDM),
and inter-trial variability on drift speed is uniformly distributed between 0 and 0.5 (only
for RDM). For all three models, 100 drift speeds are incorporated per grid point, covering
choice probabilities from 0.001 to 0.999. For the recovery study, parameters are drawn from
the same distributions that are used for the creation of the prepaid grids, with a time-scale
parameter uniformly drawn between 0.25 and 1.75 and a fixed non-decision time uniformly
drawn between 0 and 0.3 seconds. The effective parameter ranges that this results in - in
terms of the parametrizations used in this paper - can be assessed on the scatter plots in
Figure 2, Figure 15, and Figure 16, for LIT, DDM and RDM respectively.
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(b) N = 300
Figure 15 . Scatter plots of original versus recovered parameters for the DDM. Parameters
are respectively boundary separation å, starting position x̊0 and four drift speeds v̊i. The
last graph represents the coverage of the bootstrapped confidence intervals. The horizontal
axis indicates the confidence interval [p, 1 − p], the vertical axis shows the fraction q of
the original parameter values falling outside of their estimated confidence interval. Perfect
coverage manifests as a straight diagonal line for each parameter. Plot (a) shows the recovery
details for N = 1000 trials per stimulus condition, plot (b) for N = 300.
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(b) N = 300
Figure 16 . Scatter plots of original versus recovered parameters for the RDM. Parameters
are respectively boundary separation å, starting position x̊0, variability of starting position
sx̊0, variability of drift speed η̊ and four drift speeds v̊i. The last graph represents the
coverage of the bootstrapped confidence intervals. The horizontal axis indicates the con-
fidence interval [p, 1 − p], the vertical axis shows the fraction q of the original parameter
values falling outside of their estimated confidence intervals. Perfect coverage manifests as a
straight diagonal line for each parameter. Plot (a) shows the recovery details for N = 1000
trials per stimulus condition, plot (b) for N = 300.
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Appendix IV

The prepaid method as described in Mestdagh et al. (2019), application 3, can readily be
used for generic diffusion models of choice RT where drift speed (or stimulus coherence) is the
only experimental condition dependent parameter. To determine if either leak or boundary
separation is the best single parameter explanation of the SAT manipulation, the method
needs to be extended to allow other cross-conditional constraints and the following procedure
is used: for every participant, the speed and accuracy data are estimated separately and
two sets of non-parametric bootstrap estimates are obtained (both with 100 resamplings).
We now have two overlapping clouds of parameter locations that we can use to create a
new prepaid grid with either leak or boundary separation being free to change across SAT
conditions. Practically, we take all possible pairs of bootstrap estimates - one estimate from
each cloud - and each time we average the parameters that are shared across SAT conditions,
while keeping the designated free SAT parameter separate for the two conditions. This
results in a new parameter grid that has one extra parameter dimension (100x100 points,
now covering two 2 SAT conditions). The choice RT distributions connected to this grid are
then simulated at an accuracy of 10000 trials per stimulus-SAT condition. Based on this
new prepaid grid the final estimate is done and resulting fits are compared. This procedure
is done separately for every single participant and for both free parameter proposals (leak
and boundary separation respectively).


